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Abstract

Satisficing choice pattern has been accused of a lack of cognitive ability in perceiv-

ing and analyzing alternatives. In an effort to disentangle the limitations of noticing

alternatives from other factors, this paper proposes a model of satisficing under lim-

ited attention. Our focus centers on the idempotent attention rules, leading to Sat-

isficing under Idempotent Attention (SIA). Our study provides a characterization of

SIA as well as a discussion of revealed attention and preference practices. Notably,

these outcomes stem from choices made on a subset of menus. The revealed attention

and preference, however, remain inherently non-unique. Additionally, considering the

idempotent nature of attention filters and competition filters, we also present distinc-

tive characterizations of satisficing under these two attention rules.
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1 Introduction

The classical theory of choice proposes that decision makers (DMs) choose the ”best”

alternative from a given set of choices. In real life scenarios, however, the best alternative

may not always be the one chosen. Simon (1959) argues: “ The entrepreneur may not care

to maximize, but may simply want to earn a return that he regards as satisfactory.”

Satisficing, as described in Simon (1997), refers to the selection of alternatives that

meet or exceed the criteria instead of selecting the best alternative. Simon (1997) ascribe

satisficing to “the limits of human cognitive capacity for discovering alternatives, computing

their consequences under certainty or uncertainty, and making comparisons among them.”

The lack of cognitive abilities has been used as motivation in previous research related

to satisficing. It has been demonstrated in the research on intransitive indifference (for

example, see Luce (1956), Fishburn (1975), Aleskerov et al. (2007), and Manzini and

Mariotti (2012)) that DMs are incapable of noticing small differences in utility between two

alternatives. As outlined in Tyson (2008), DMs are unable to recognize some preferences

among alternative options due to their limitations in cognitive ability. According to Frick

(2016), DMs have limited cognitive resources, causing them to perceive coarse preferences

in a large menu.

The reasons for this can be divided into two categories: the ability to perceive alter-

natives and the ability to analyze them. Simon (1982) uses an example of chess players

to illustrate it. Chess players may notice a limited number of moves at any given time.

Analyzing them sequentially, they select a move once it meets their objectives. The pro-

cess of analyzing moves involves the complexity of computing, which is difficult to model.

DMs’ limited ability to perceive alternatives, however, can be modeled separately from the

classical satisfying model.

This limited ability of DMs to recognize alternatives is referred to as limited attention.

Assuming limited attention, satisficing becomes that a DM pays attention to a nonempty

subset of the choice set, and selects options that meet or exceed certain criteria.

Satisficing under limited attention (SLA) is comprised of three components: attention,

preferences, and criteria. Let Γ be the attention rule of the DM. It maps every choice set

to one of its nonempty subsets. The DM pays attention to Γ(S) given a choice set S. The

preference is a binary relation ≽ on alternatives which is assumed to be a linear order, i.e.,

complete, transitive and antisymmetric. The DM has a criterion for every choice set S,

denoted by θ(S) ∈ Γ(S). We refer to θ as a threshold function. If the DM’s behavior is an
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SLA, the chosen alternatives should catch the attention and meet or exceed the criterion.

Mathematically, for S, the chosen alternatives should in {x ∈ Γ(S) : s ≽ θ(S)}.
Suppose that the set of alternatives is finite. Imagine that we can observe the DM’s

choice for every choice set as an outsider. The DM’s choice in S is denoted by C(S), which

is a nonempty subset of S. Since the DM can select multiple alternatives, C is a choice

correspondence. It follows that a choice correspondence can be rationalized by an SIA if

and only if there exists a tuple ⟨Γ,≽, θ⟩ such that C(S) = {x ∈ Γ(S) : s ≽ θ(S)} for every

choice set S.

In the absence of any further restrictions, every choice correspondence can be rational-

ized by an SLA. Similar situations can be found in Masatlioglu et al. (2012), Lleras et al.

(2017) and Lleras et al. (2021). The papers impose a number of restrictions on attendance

rules 1. We also investigate SLA with respect to a special attention rule, idempotent at-

tention rules (see Li (2023)). According to Li (2023), an attention rule Γ is idempotent if

Γ(S) = Γ(Γ(S)) for every choice set S. This implies that the DM believes that S and Γ(S)

are the same choice set. As the logic of choices within identical sets should be the same,

we should ensure that the thresholds of S and Γ(S) are the same, i.e., θ(S) = θ(Γ(S)).

This model is referred to as satisficing under idempotent attention (SIA).

We provide two methods of characterizing the SIA: the acyclicity of a binary relation

and the WARP-like axiom. The former characterization drives from an equivalent state-

ment of satisficing: for a choice set, the picked alternatives should be better than the

unchosen ones. It turns out that the acyclicity of this “revealed” binary relation charac-

terizes the satisficing. As well, in the SIA, the chosen options should be better than the

alternatives that attract attention but are not chosen.

The WARP-like axiom for satisficing suggests that every menu contains the ”best”

alternative, and if a non-best alternative is chosen when the best one is available, then the

best alternative must be chosen. As an analogy, the WARP-like axion for the SIA requires

that the best alternative be selected if the DM pays attention to it.

For characterizing the SIA, the remaining question is how to determine the DM’s at-

tention rule. According to the idempotent attention rule, the choice in S is the same as

the choice in Γ(S). In other words, if some nonempty set of S serves as the Γ(S), they

must exhibit the same choices. When a set does not have any proper subsets exhibiting

the same choice, the DM should pay full attention to it. We borrow the concept from Li

1These new attention rules are known as attention filters (see Masatlioglu et al. (2012)), competition
filters (see Lleras et al. (2017)), and path independent consideration (see Lleras et al. (2021)), respectively.
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(2023), and refer to these sets as basic sets. Consequently, every set S has a corresponding

basic set B, which can be roughly interpreted as Γ(S), i.e., Γ(S) = B.

Inspired by Bernheim and Rangel (2007) and Bernheim and Rangel (2009), we study

the revealed SIA pairs, i.e., ⟨Γ,≽, θ⟩ with the consideration of welfare implications. Similar

to Masatlioglu et al. (2012), we use the most stringent criterion for revealing SIA pairs to

provide the safest option for welfare policies.

It is critical to emphasize that every choice correspondence that can be rationalized by

an SIA must have at least two consistent SIA pairs. This is primarily due to the non-unique

nature of revealed preferences. It also results in the inability to identify the DM’s choice

procedure under the SIA in a unique manner.

Attention filters and competition filters are special cases of idempotent attention rules

(see Li (2023)). The satisficing under attention filter (SAF) and satisficing under compe-

tition filters (SCF) are therefore special cases of the SIA. In this paper, we demonstrate

that the SAF, as well as the SCF, can both be characterized by two distinct systems of ax-

ioms. These axioms are based on the same intuitions as those in the SIA. The distinctions

between these three models are driven by attention formation procedures.

The reaming paper is arranged as follows. The SIA will be formally introduced in

Section 2. In Section 3, we provide two characterizations of the SIA as well as the results

of revealed SIA pairs. In Section 4, we characterize two special cases of the SIA: SAF and

SCF. Section 5 concludes this paper.

2 The Model

Let X be a finite set, and X be the collection of nonempty subsets of X. We refer to each

element in X as an alternative and each element in X as a menu. A mapping C : X → X
is a choice correspondence if C(S) ⊆ S for all S ∈ X . An outside researcher can observe

the choice made by a decision maker (DM) for each menu, i.e., C.

In the satisficing model, DMs have a specific criterion in mind. Given any menu S, they

only choose the alternatives that are “better” than the criterion. We generalize the idea

of criteria as a mapping θ : X → X. Further, we say θ is a threshold function if θ(S) ∈ S

for all S ∈ X .

When DMs are limitedly attentive, they pay attention to some (not necessarily all)

alternatives in each menu. When they use the same procedure in the satisficing model

to make decisions, they should use it with the alternatives that capture their attention.
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We refer to this process as satisficing under limited attention. To describe that DMs has

limited attention, we define a mapping Γ : X → X . We say Γ is an attention rule if

Γ(S) ⊆ S for all S ∈ X .

Definition 1. A choice correspondence C is a satisficing under limited attention

(SLA) if there is a tuple ⟨Γ,≽, θ⟩ such that C(S) = {s ∈ Γ(S) : s ≽ θ(S)} where

(1) Γ : X → X is an attention rule;

(2) ≽ is a linear order, i.e., ≽ is complete, transitive, and antisymmetric;

(3) θ : X → X is a threshold function with θ(S) = θ(Γ(S)) ∈ Γ(S) for all S ∈ X .

In this framework, there is another way to interpret the decision under satisficing: The

chosen alternatives should be better than the unchosen ones. Under the assumption of

limited attention, it can be interpreted as if the DM pays attention to x and y in a menu

S, x ∈ C(S) while y /∈ C(S) implies that x ≻ y.

Proposition 1. C can be rationalized by an SLA if and only if there is a linear preference

≽ and an idempotent attention rule Γ such that for all S ∈ X

C(S) =

{s ∈ Γ(S) : s ≻ x for all x ∈ Γ(S) \ C(S)} if Γ(S) \ C(S) ̸= ∅,

Γ(S) if Γ(S) \ C(S) = ∅.

Proof. Suppose ≽ can be rationalized by an SLA under ⟨Γ,≽, θ⟩. Fix any S, and take any

x ∈ C(S). When C(S) = Γ(S), by the SIA, we have that θ(S) = min(Γ(S),≽). When

C(S) ̸= Γ(S), we know that x ≻ θ(S) ≻ y for all y ∈ Γ(S) \C(S). Take any s ∈ Γ(S) with

s ≻ x for all x ∈ Γ(S) \ C(S). If s = θ(S), then s ∈ C(S). If s ̸= θ(S) and θ(S) ≻ s, then

s /∈ C(S). We then know that s ≽ θ(S), which implies that s ∈ C(S).

For the converse direction, suppose that there is a linear preference≽ and an idempotent

attention rule Γ such that C(S) is given as in this Proposition. Let θ(S) = min(C(S),≽)

for all S ∈ X . It is evident that s ∈ Γ(S) ∩ C(S) implies that s ≽ θ(S) for all S.

Similar to the situation in Masatlioglu et al. (2012), if attention rules are not further

restricted, every choice correspondence is an SLA.

Proposition 2. Every choice correspondence C is an SLA.
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Proof. Fix an arbitrary linear order ≽ on X. Let Γ(S) = C(S), and θ(S) = min(C(S),≽).

Take any x ∈ C(S), we know that θ(S) = min(C(S),≽) ≽ x, which implies that C(S) ⊆
{x ∈ Γ(S) : x ≽ θ(S)}. The converse direction is obvious.

Among all potential restrictions on attention rules, we focus on the family of idempotent

attention rules.

Definition 2. (Idempotent Attention Rule) An attention rule Γ is an idempotent attention

rule if Γ(S) = Γ(Γ(S)) for all S ∈ X .

Li (2023) points out that idempotent attention rules are generalizations of attention

filters (cf. Masatlioglu et al. (2012)), competition filters (cf. Lleras et al. (2017)), and path

independent consideration from Lleras et al. (2021). It is implicit in idempotent attention

rules that DMs are not aware of omitted alternatives on a menu S. Additionally, they

believe that S and Γ(S) are identical.

3 Satisficing under Idempotent Attention

The satisficing under idempotent attention can be achieved by imposing idempotence on

the attention rule of the SLA.

Definition 3. (SIA) A choice correspondence C is a satisficing under idempotent

attention (SIA) if C(S) = {s ∈ Γ(S) : s ≽ θ(S)} where

1. Γ is an idempotent attention rule.

2. ≽ is a linear order, i.e., ≽ is complete, transitive, and antisymmetric.

3. θ : X → X is a threshold function such that θ(S) = θ(Γ(S)) ∈ Γ(S) for each S ∈ X .

We infer ⟨Γ,≽, θ⟩ as an SIA pair that is consistent with C.

When we assume that DMs’ attention rules are idempotent, there are some choice

correspondences that cannot be rationalized by an SIA.

Example 1. Let X = abcd, and the choice correspondence is given as

|S| ≥ 2 abcd abc abd acd bcd ab ac ad bc bd cd

C abc ab a ad bd a a d b b c
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Suppose that ⟨Γ, θ,≽⟩ is a consistent SLA. Since C(abcd) = abc ̸= C(abc), thus Γ(abcd) =

abcd which implies that c ≻ d. Similarly, Γ(acd) = acd. However, C(acd) = ad implies

that d ≻ c.

3.1 The Characterization of SIA

According to idempotent attention rules, the DM pays attention to Γ(S) for a menu S, all

the alternatives in Γ(S) should catch the DM’s attention when Γ(S) is displayed. Due to

this, the DM’s attention can be reduced to one of its subsets for each menu. Moreover, since

θ(S) = θ(Γ(S)), C(S) = C(Γ(S)) when C can be rationalized by an SIA. The reduction

procedure is not applicable to a set S if it does not have a proper subset in which the DM

makes the same choice. We refer to S as a basic set.

Definition 4. (Basic Sets) A set S ∈ X is basic if there is no T ⊂ S such that C(T ) =

C(S).

The collection of basic sets is determined by the choice correspondence of the DM. The

collection of basic sets with respect to C is referred to as BC . Usually, when investigating

the choices of the DM and there is no misrepresentation, we use B as the collection of basic

sets.

Each menu S has a basic set B with B ⊆ S where C(S) = C(B). This B is referred

to as a corresponding basic set of S, and the collection of corresponding basic sets of S is

denoted as B(S). If we want to interpret a B ∈ B(S) as Γ(S) as the intuition in defining

basic sets, B must catch the DM’s full attention due to the requirement of idempotent

attention rules.

Proposition 3. If C can be rationalized by an SIA under ⟨Γ,≽, θ⟩, then Γ(B) = B for all

B ∈ B.

Proof. Suppose C is an SIA. Take any consistent pair ⟨Γ, θ,≽⟩, and any B ∈ B. By

contradiction, suppose that Γ(B) ⊂ B. Notice that, θ(Γ(B)) = θ(B) because Γ(B) =

Γ(Γ(B)). We have

C(Γ(B)) = {x ∈ Γ(Γ(B)) : x ≽ θ(Γ(B))}

= {x ∈ Γ(B) : x ≽ θ(B)}

= C(B).

7



Hence, B is not basic. That’s a contradiction.

When we interpret the DMs’ choice on basic sets as mentioned in Proposition 1, x, y ∈
B, x ∈ C(B) and y /∈ C(B) indicates that x is strictly preferred to y.

Definition 5. For any x, y ∈ X, we say x P y if there is a basic set B with x, y ∈ B such

that x ∈ C(B) and y /∈ C(B).

When C can be rationalized by an SIA, x P y must imply that x is strictly preferred

to y. Due to this, for every linear preference ≽ that is consistent with the SIA, P ⊆ ≽.

Assuming that x P y and y P z, we can infer x P z despite the absence of B where

x ∈ C(B) and z /∈ C(B). In a different perspective, if there is a B where the DM’s choice

shows that z P x, then C cannot be rationalized by an SIA since ≽ exhibits a cycle.

Aleskerov et al. (2007) and Tyson (2008) provide a characterization of satisficing.

Specifically, the DM should prefer the chosen alternative over the unchosen alternative,

and this binary relation should be acyclic. In the same manner, the acyclicity of P ensures

a satisficing on B.
The SIA is also characterized by the acyclicity of P . Due to the fact that B(S) ̸= ∅,

S can be associated with one of its corresponding basic sets by setting Γ(S) = B. It is

possible to make this construction an idempotent attention rule by arbitrary permutations

of B. The linear preference in this SIA may be any completion of P . Once the ≽ has been

determined, would the threshold function be min(C(S),≽) for all S ∈ X .

Lemma 1. C is an SIA if and only if P is acyclic.

Proof. We first suppose that C is an SLA under ⟨Γ,≽, θ⟩. Since Γ(B) = B for all B ∈ B.
By contradiction, suppose there is a collection {xi}ki=1 where xi ∈ X for all i such that

x1 P x2 P, ..., P xk P x1. Hence, we know there is a collection of basic sets {Bi}ki=1 such

that xi ∈ C(Bi) and xi+1 ∈ Bi \C(Bi) for all i < k, and xk ∈ C(Bk) and x1 ∈ Bk \C(Bk).

As a result, x1≽ x2, ...,≽ xk≽ x1.

Now supposes P is acyclic. Let {Bi}ni=1 be the collection of basic sets. Let PR be the

transitive closure of P , PR be a completion of PR. Let Γ(S) = Bmin{i: Bi⊆S and C(Bi)=C(S)},

and θ(S) = min(C(S), PR). We then claim that C(S) = {x ∈ Γ(S) : x ≽ PR θ(S)}. Take
any x ∈ C(S), we then know that x ∈ Bmin{i: Bi⊆S and C(Bi)=C(S)} = Γ(S), and x PR θ(S).

For the converse, take any S and y ∈ {x ∈ Γ(S) : x PR θ(S)}. By contradiction, suppose

that y /∈ C(S), we know that y ∈ Bmin{i: Bi⊆S and C(Bi)=C(S)} = Γ(S) and y /∈ C(Γ(S)).

That’s a contradiction.
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According to classical revealed preference theory, a choice function is rationalizable

when it satisfies the Weak Axiom of Revealed Preference (WARP). Masatlioglu et al.

(2012) states the WARP as:

“For any nonempty S, there exists x∗ ∈ S such that for any T including x∗, if

C(T ) ∈ S; then C(T ) = x∗.”

The intuition behind WARP is that the DM’s choice should be consistent with some max-

imization behavior. The x∗ is the “best” alternative in S. As a rule, rational DMs should

not choose alternatives that are less desirable than the best alternative. 2 From the stand-

point of revealing preferences, the chosen alternative should be the best option from the

menu. The DM should, of course, prefer it to other alternatives that have not been chosen.

As part of the satisficing framework, DMs do not necessarily need to engage in max-

imization behaviors. As opposed to selecting the best option in every menu, they tend

to set a criterion θ and choose the options that meet or exceed that criterion. Despite

the differences in intuition between classical choice and satisficing models, they share a

similar implication regarding preferences: the chosen alternative should be better than the

unchosen alternatives. The satisficing model under full attention can be characterized by

the WARP-S: For any nonempty S, there exists x∗ ∈ S such that for any T including x∗,

if C(T ) ∩ S ̸= ∅, then x∗ ∈ C(T ). 3

In WARP-S, if an inferior alternative is chosen when there is a better option, then the

better option should also be selected. There is an additional requirement for the DM’s

attention when limited attention is present. Specifically, if x is better than y and both x

and y are available, if y is chosen, the DM must choose x if x catches the attention of the

DM.

Axiom 1. (WARP-IA) For every S ∈ X , there is an x∗ ∈ S such that for any basic set B

if C(B) ∩ S ̸= ∅ and x∗ ∈ B then x∗ ∈ C(B).

WARP-IA generalizes the idea of WARP-S to cases of limited attention. When we

relax the requirement of basic sets in WARP-IA, WARP-IA and WARP-S are identical. A

2This version of WARP is of classical choice theory with linear preferences. The best alternatives in
each menu are not necessarily unique if the preference is a weak order. DMs’ choices are described as choice
correspondences in this case. The corresponding WARP becomes: For any S, T ∈ X , if C(S) ∩ T ̸= ∅;
then C(T )∩ S ⊆ C(S). Two different versions of WARP have similar meanings. This paper focuses on the
version provided by Masatlioglu et al. (2012), which provides a suitable benchmark for comparison.

3Please see Appendix A for details.
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DM considers all alternatives in a basic set when ≽ can be rationalized by an SIA based

on Proposition 3. Therefore, when the DM chooses a less desirable alternative in B, we

can infer that better alternatives should also be selected.

The x∗ in S mentioned in WARP-IA could be interpreted as the most preferred alter-

native in S with respect to the DM’s preference. Moreover, since the DM’s attention on

S is one of the corresponding basic sets of S, when using WARP-IA we can focus on the

collection of B rather than X . Consequently, WARP-IA is equivalent to the acyclicity of

P .

Lemma 2. P is acyclic if and only if C satisfies WARP-IA.

Proof. Suppose that P is acyclic. We know that C can be rationalized by an SIA pair

⟨Γ, θ,≽⟩. Take any S ∈ X , and let x∗ = max(S,≽). If B is basic, then Γ(B) = B. Since

C(B) ∩ S ̸= ∅, we know that x∗ ≽ y for all y ∈ C(B) ∩ S. Therefore x∗ ∈ C(B).

For the converse direction, we prove it by the contrapositive statement. Suppose that

P is cyclical. There is a z1 ∈ X such that z1 PR z1 for a finite collection of alternatives

{zj}mj=1. Let {Zj}mj=1 be the collection of basic sets where

z1, z2 ∈ Z1, z1 ∈ C(Z1), and z2 /∈ C(Z1);

z2, z3 ∈ Z2, z2 ∈ C(Z2), and z3 /∈ C(Z3);

· · ·

z1, zm ∈ Zm, zm ∈ C(Zm), and z1 /∈ C(Zm).

Now, consider Z = {zj}mj=1. For z1 ∈ Z, there is a basic set Zm with z1 ∈ Zm such that

C(Zm) ∩ S ̸= ∅ and z1 /∈ Zm. For zj ∈ Z where j > 1, there is a basic set Zj−1 with

zj ∈ Zj−1 such that C(Zj−1) ∩ S ̸= ∅ and zj /∈ Zj−1.

Lemma 1 and Lemma 2 suggest that WARP-IA characterizes the SIA.

Theorem 1. A choice correspondence C is an SIA if and only if C satisfies WARP-IA.

3.2 Revealed SIA Pairs

A choice correspondence C might be rationalized by multiple SIA pairs. The situation

arises from the fact that there are multiple candidates for linear preferences and idempotent

attention rules.
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Example 2. Let X = xyz. Consider the choice correspondence C and idempotent atten-

tion rules

|S| ≥ 2 xyz xy xz yz

C x xy x y

Γ1 x xy x y

Γ2 xz xy xz y

Γ3 xz xy xz yz

Γ4 xyz xy xz yz

Consider two preferences on X: x ≻1 y ≻1 z and x ≻2 z ≻2 y. Let θi(S) = min(C(S),≻i)

for i = 1, 2. There are multiple SIA pairs to represent C such as ⟨Γ1,≽1, θ1⟩, ⟨Γ2,≽1, θ1⟩,
⟨Γ3,≽2, θ2⟩ ⟨Γ4,≽2, θ2⟩.

Obviously, when the preference is fixed, only some of the idempotent attention rules are

consistent with the SIA. Given the DM’s preference as ≽1, all idempotent attention rules

are plausible, while when the DM’s preference is ≽2, the Γ4 is not consistent.

Similarly, when the idempotent attention rule is determined, some of the preference

relations and corresponding threshold functions will no longer be plausible. For example,

given Γ2, the DM should strictly prefer x to z. Meanwhile, if the idempotent attention rule

is Γ4, she should strictly prefer x the most followed by y, and z the least.

Let ⟨Γi,≽i, θi⟩i∈I be the collection of all consistent SIA pairs for the choice correspon-

dence C. Some linear orders on X should never coincide with ≽i for some i ∈ I. For

instance, in Example 1, abcd is a basic set which implies that c P d. Therefore, any lin-

ear order ≽ that includes d ≻ c cannot be considered consistent. Meanwhile, in Example

2, when the preference is fixed in an SIA pair, the choice of threshold functions and the

idempotent attention rules are limited.

Afterwards, we analyze the consistent preferences, then examine the consistent idem-

potent attention rules, and finally examine the consistent threshold functions.

3.2.1 Revealed Preference under the SIA

Multiple preference relations are consistent with the same C. There are even some that

are controversial. For instance, in Example 2 ≽1 and ≽2 are all consistent linear orders,

whereas y ≻1 z and z ≻1 y are controversial.

The implications of these two contradictory predictions for welfare policy are contro-

versial. Despite the fact that policymakers do not intend to harm the DM, if they falsely
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believe one preference rather than another, the policy may adversely affect the DM. Inspir-

ing by Bernheim and Rangel (2007) and Bernheim and Rangel (2009), we follow Masatlioglu

et al. (2012) and use the most stringent criteria to reveal the DM’s attention.

Definition 6. Given any x, y ∈ X, x is revealed to be preferred to y if x ≽i y for all

i ∈ I.

According to the proof Lemma 1, any completion of PR, the transitive closure of P ,

can be a consistent linear order. As a result, PR captures the revealed preference.

Theorem 2. Suppose C admits an SIA. For any x, y ∈ X, x is revealed to be preferred to

y if and only if x PR y.

Proof. Suppose that C admits an SIA. Take any x, y ∈ X with x PR y, by the proof of

Lemma 1 we know that x ≻i y for all i ∈ I. For the converse direction, suppose that x

is revealed to be preferred to y, i.e., x ≽i y for all i ∈ I. By contradiction, suppose that

¬x PR y. If y PR x, then y ≻i x for all i ∈ I. If y and x are PR incomparable, then there

is a completion of PR such that y PR x. As a result, there is i ∈ I such that y ≻i x.

According to Theorem 2, there is an immediate relationship between consistent linear

orders and PR.

Corollary 3. If C is an SIA, then
⋂

i∈I ≽i = PR.

Every ≽i represents a potential underlying preference used by the DM. It can be any

completion of PR. It should be noted, however, that uniqueness of preference is never true.

Proposition 4. Suppose that |X| ≥ 2. If C is an SIA, then there exists a pair of x, y ∈ X

such that x, y are PR incomparable. In other words, if C is an SIA, then |I| ≥ 2.

Proof. Suppose that C is an SIA. For any S ∈ X , if |C(S)| = 1, then we can let Γ(S) =

C(S). Consequently, there is no information for revealed preference. We can focus on

the collection of basic sets where |C(B)| ≥ 2. By contradiction, suppose that every pair

of elements in X is PR comparable. Take the top 2 elements of X with respect to PR,

and denote them as x and y. Let’s consider all basic sets that contain x and y. We then

know that {x, y} ⊆ C(B) for all these kinds of basic sets. As a result, x and y are PR

incomparable.
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The uniqueness of revealed preferences is impeded by two factors. As a first point,

satisficing differs from classical utility maximization. By satisficing, the DM selects al-

ternatives that meet or exceed the criteria. The best alternative should be selected, but

not all chosen alternatives are necessarily the most desirable. Consider the case in which

the DM always chooses x whenever x is available. The same is true for y as well. In this

manner, we are able to prove that x and y are all (at least) better than the rest of the

alternatives while we are unable to determine the preference order between x and y by

analyzing the revealed preferences.

Second, idempotent attention rules make it more difficult to analyze revealed prefer-

ences. With full attention, it is possible to conclude that the selected alternatives should

be superior to the non-selected ones. As a result, determining the best alternatives is am-

biguous. When the DM is limited in their attention, we may not be able to distinguish

between the worst alternatives and the best because the unchosen alternatives may either

be dominated by other alternatives or neglected by the DM.

Example 3. Let X = xyz, and the choice correspondence C is given as

|S| ≥ 2 xyz xy xz yz

C xy xy x z

Γ1 xy xy x z

Γ2 xyz xy x z

θ y y x z

Consider two distinct linear orders on X: x ≻1 y ≻1 z and z ≻1 x ≻1 y. It is observed

that ⟨Γ1,≽1, θ⟩ and ⟨Γ2,≽2, θ⟩ are all consistent pairs of SIA. It is difficult, however, to

tell whether z is the best or worst, which makes the practice of revealed attention in this

paper more convincing.

3.2.2 Revealed Attention under SIA

In the same manner, we examine the revealed attention by adopting the most stringent

criterion.

Definition 7. For any S ∈ X , x is revealed to catch attention in S if x ∈ Γi(S) for

all i ∈ I, and x ∈ S is revealed to catch no attention in S if x /∈ Γi(S) for all i ∈ I.

Meanwhile, S is revealed to catch full attention if x is revealed to catch attention in

S for all x ∈ S, i.e., Γi(S) = S for all i ∈ I.

13



For the SIA, we can associate S with one of its corresponding basic sets B, and interpret

B as the Γ(S). As shown in Example 3, the DM’s attention on S is not necessarily basic.

Intuitively, we can throw any “dominated” alternatives in any corresponding basic sets,

and the new set is still consistent with one of the idempotent attention rules. Let us denote

the undominated alternatives in S as U c(S, PR) = {s ∈ S : ∄ x ∈ C(S) s.t. s PR x}.

Lemma 3. Suppose that C admits an SIA. For any T ⊆ S, there is a Γi such that

Γi(S) = T if and only if C(T ) = C(S) and T \ C(S) ⊆ U c(S, PR).

Proof. Suppose that C admits an SIA. By the proof of Lemma 1, there is an i ∈ I such that

Γi(X ) = B, and the corresponding consistent pair of the SIA is ⟨Γi,≽i, θi⟩. Take any T ⊆ S

with C(T ) = C(S) and T \ C(S) ⊆ U c(S, PR). Without loss of generality, we can assume

that S, T /∈ B and T ⊂ S. For any x ∈ X, let us define x↑ =: {y ∈ X : y PR x} and x↓ =:

{y ∈ X : x PR y}. Moreover, let x↑c and x↓c as the complements of x↑ and x↓, repectively.

Let us consider the collection
⋃

t∈T\C(S) t
↓c. Since t↓c contains either PR dominating or

incomparable alternatives with respect to t, we can find a linear completion of PR on this

collection such that t is worse than every t′ ∈ t↓c. Let us denote it as PR
′
. Moreover, we

can extend this binary relation by assuming that x PR
′
y for x ∈ X \

⋃
t∈T\C(S) t

↓c and

y ∈
⋃

t∈T\C(S) t
↓c. Let us define a new binary relation

x ≽′
i y :=

x PR
′
y if (x, y) ∈ PR

′
,

x ≽i y otherwise.

We then want to show that ≽′
i is a linear order. Obviously, ≽′

i is complete and antisymmet-

ric. Take any x, y, z ∈ Z with x ≽′
i y and y ≽′

i z. It is clear that is x, y, z ∈
⋃

t∈T\C(S) t
↓c or

x, y, z ∈ X \
⋃

t∈T\C(S) t
↓c, x ≽′

iz. When x, y ∈ X \
⋃

t∈T\C(S) t
↓c and z ∈ X \

⋃
t∈T\C(S) t

↓c,

x ≽i z. When x ∈ X \
⋃

t∈T\C(S) t
↓c and y, z ∈ X \

⋃
t∈T\C(S) t

↓c, x ≽i z. Now, let us

consider

Γ′
i(Y ) =

T if Y = S or T,

Γi(Y ) otherwise.

Obviously, Γ′
i is idempotent. Let θ′i(S) = min(C(S),≽′

i). We want to show that ⟨Γ′
i,≽

′
i, θ

′
i⟩

is a consistent pair of the SIA. Take any (x, y) ∈ PR, we want to show that (x, y) ∈ ≽′
i. If

x ∈
⋃

t∈T\C(S) t
↓c, then y ∈

⋃
t∈T\C(S) t

↓c. As a result, x PR
′
y which implies that x ≽′

i y.

If x ∈ X \
⋃

t∈T\C(S) t
↓c and y ∈

⋃
t∈T\C(S) t

↓c, then x ≽′
i y. If x ∈ X \

⋃
t∈T\C(S) t

↓c and

y ∈ X \
⋃

t∈T\C(S) t
↓c, then x ≽i y, which suggests that x ≽′

i y. Consequently, for any
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Y ̸= S or T , C(Y ) = {s ∈ Γi(Y ) : y ≽i θi(Y )} = {s ∈ Γ′
i(Y ) : y ≽′

i θ
′
i(Y )}. We then only

need to check the cases of C(S) and C(T ). Since T is not basic, we know that there is a

B ∈ B(T ) such that Γi(T ) = B. Moreover, C(T ) = {t ∈ B : t ≽i θi(B)} = C(B). Take any

t ∈ C(T ), we know that t ≽′
i θ

′
i(T ) by the definition of θ′i. Take any t ∈ T with t ≽′

i θ
′
i(T ),

by contradiction, suppose that t /∈ C(T ). As a result, t ∈ T \C(T ) = T \C(S). Therefore,

for all x ∈ C(S) = C(T ) = C(B), we have either x PR t or x and t are PR-incomparable.

Hence, by the definition of ≽′
i, we know that x ≻′

i t which implies that θ′i(T ) ≻′
i t.

For the converse direction, suppose that there is a Γi such that Γi(S) = T . Thus,

C(S) = {s ∈ T : s ≽i θi(S)} = C(T ). By contradiction, suppose that T \ C(S) is not a

subset of U c(S, PR). That is, there is a t ∈ T \ C(S) such that there is a x ∈ C(S) such

that t PR x which implies that t ≻i x. Therefore, t ∈ C(S).

The DM’s attention for a menu S can be assigned to one of its subsets T with C(S) =

C(T ). Moreover, T is the union of a corresponding basic set of S and a subset of U c(S, PR).

An alternative that attracts the attention of the DM in S must exist in every corresponding

basic set. In contrast, an alternative does not draw any attention in S, suggesting it is not

in any B ∈ B(S) and dominates some of the chosen alternatives.

Theorem 4. Suppose that C is an SIA. An alternative x is revealed to catch attention

in S if and only if x ∈ B for every B ∈ B(S). An alternative x ∈ S is revealed to catch

no attention in S if and only if for all T ⊆ S that including x, either C(T ) ̸= C(S) or

T \ C(S) ̸⊆ U c(S, PR).

Proof. For the first half of the statements, suppose that x is revealed to catch attention in

S. That is, x ∈ Γi(S) for all i ∈ I. As we know that for any B ∈ B(S) there is a Γi such

that Γi(S) = B, which implies that x ∈ B for all B ∈ B(S). For the converse direction,

suppose that x ∈ B for every B ∈ B(S). By contradiction, supposes that there is an i ∈ I

such that x /∈ Γi(S). Since C(S) = C(Γi(S)), Γi(S) /∈ B. Take any B′ ∈ B(Γi(S)), we

know that B ⊂ Γi(S) ⊆ S and C(B′) = C(Γi(S)) = C(S). Hence, B′ ∈ B(S) and x /∈ B′.

The second half of the statement is a direct result of Lemma 3.

When analyzing revealed attention on menus, we seek to identify the characteristics of

the menus that the DM pays full attention to. As shown in Proposition 3, basic sets must

catch the DM’s full attention. As well, the converse is true.

Theorem 5. Suppose that C is an SIA. S is revealed to catch full attention if and only if

S is basic.
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Proof. We only need to show that if S is revealed to catch full attention, then S ∈ B. By
contradiction, suppose that S ∈ Bc. Then, there is a B ∈ B(S). Based on the proof of

Lemma 1, there is an i ∈ I such that Γi(S) = B.

3.2.3 Revealed Threshold under SIA

Threshold functions are the remaining part of revealing the SIA pair. We also employ the

most stringent condition as usual.

Definition 8. Suppose that C can be rationalized by an SIA. An alternative x ∈ S is

revealed to be the threshold of S if θi(S) = x for all i ∈ I.

When the idempotent attention rule Γi and the linear preference rule ≽i are given, the

least preferred chosen alternative serves as the threshold for every menu. The threshold

function θi will then be uniquely pinned down under these circumstances.

Proposition 5. If C can be rationalized by an SIA under ⟨Γi,≽i, θi⟩, then θi(S) must be

min(C(S),≽i) for all S ∈ X .

Proof. Suppose that C can be rationalized by an SIA under ⟨Γi,≽i, θi⟩. By contradiction,

suppose that θi ̸= min(C(S),≽i). If θi(S) ≻i min(C(S),≽i), then min(C(S),≽i) /∈ C(S).

If min(C(S),≽i) ≻i θi(S), then θi(S) ∈ C(S).

Due to the fact that every completion of PR can be regarded as a consistent linear

preference, the threshold function also varies when the completion of PR changes. If an

alternative x ∈ C(S) dominates another chosen alternative, then it cannot be a candidate

for θi(S) for every i ∈ I. Those candidates should be alternatives in MIN(C(S), PR) :=

{x ∈ C(S) : ∄y ∈ C(S) s.t. x PR y}.

Lemma 4. Suppose that C can be rationalized by an SIA. For any x ∈ X and S ∈ X ,

θi(S) = x for some i ∈ I if and only if x ∈ MIN(C(S), PR).

Proof. Suppose that C can be rationalized by an SIA, and take any x ∈ S ∈ X . As-

sume that there is an i ∈ I such that θi(S) = x. By contradiction, suppose that

x /∈ MIN(C(S), PR), we then know that there is y ∈ C(S) such that x PR y. By Corollary

3, we know that x≽i y for all i ∈ I. Since C(S) ⊆ Γi(S) for all S, y /∈ C(S). For the

converse direction, suppose that x ∈ MIN(C(S), PR), we know that there is a linear order

≽i which is a linear completion of PR such that y ≽i x for all y ∈ C(S). By the proof of
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Theorem 1, we know that ≽i is a consistent preference for the SIA. Based on Proposition

5, the corresponding θi(S) = x.

As every alternative in MIN(C(S), PR) can be a candidate for the threshold used in

S, it follows that the revealed threshold of S is related to the items in MIN(C(S), PR).

Theorem 6. Suppose that C can be rationalized by an SIA. An alternative x ∈ S is revealed

to be the threshold of S if and only if y PR x for every y ∈ C(X) with y ̸= x.

4 On the Variations of Idempotent Attention Rules

It is important to note that attention rules are unique features of research on choices under

limited attention. As far as we know, they all have some restrictions on attention formation.

A popular attention rule is the attention filter, which was first used in Masatlioglu et al.

(2012). Lleras et al. (2017) proposes an attention rule known as competition filters. Li

(2023) combines attention filters with competition filters to form an attention rule called

path independent consideration.

According to Li (2023), attention filters, competition filters, and path independent con-

sideration are all special cases of idempotent attention rules. It should be noted, however,

that not all attention rules in the previous research are idempotent. For example, the

shortlisting procedure with capacity-k (see Geng and Özbay (2021)) and weak competition

filters (see Geng (2022)). The following section considers two special cases of the SIA: the

satisficing under attention filter and the satisficing under competition filter.

4.1 Attention Filter

Attention filters mean that the DM is unable to distinguish any set between S and Γ(S).

Formally,

Definition 9. An attention rule Γ is an attention filter if Γ(T ) = Γ(S) for every S, T ∈
X with Γ(S) ⊆ T ⊆ S.

As with idempotent attention rules, attention filters can be interpreted similarly. When

the DM is faced with a menu T that lies between S and Γ(S). For the DM, T , S, and Γ(S)

are all identical. We will now examine satisficing under attention filters.
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Definition 10. A choice correspondence C is a satisficing under attention filter

(SAF) if C is an SIA with ⟨Γ,≽, θ⟩ where Γ is an attention filter.

The distinction between the SIA and the SAF comes from the differences between

idempotent attention rules and attention filters. In idempotent attention rules, Γ(S) =

Γ(S \ (S \ Γ(S))) while attention filters require more. Specifically, Γ(S) = Γ(S \ Y ) for all

Y ⊆ S \ Γ(S). Therefore, when an alternative x is removed from a menu S and the DM’s

attention on S \ x changes, x must attract attention in S. If x is not chosen by the DM,

then all the alternatives in S should be preferred over x. We can define this binary relation

similarly to the SIA.

Definition 11. For any x, y ∈ X, x PAF y if there is a set S ∈ X such that x ∈ C(S),

y /∈ C(S), and C(S) ̸= C(S \ y).

Similar as the SIA, the acyclicity of PCF characterizes the SAF.

Lemma 5. C can be rationalized by an SAF if and only if PAF is acyclic.

Proof. We first show the only if part. Assume that C can be rationalized by an SAF. By

contradiction, suppose that PAF is cyclic, i.e., there is a distinct pair of x and y such that

x PAF
R y and y PAF

R x where PAF
R is the transitive closure of PAF . We also know that x

must be revealed to be preferred to y, and y is revealed to be preferred to x. Since x and y

are distinct items, this observation contradicts the preference in any SAF is a linear order.

For the converse direction, assume that PAF is acyclic. Let ≽AF be any completion of

PAF . Consider the following attention rule ΓAF and threshold function θAF :

θAF (S) = min
(
C(S),≽AF

)
, and ΓAF (S) = {C(S)} ∪ {s ∈ S : θAF (S) ≽AF s}.

Notice that C(S) = {x ∈ ΓAF (S) : x ≽AF θ(S)} for all S ∈ X . We then want to

show that C can be rationalized under the SIA by ⟨ΓAF , θAF ,≽AF ⟩. We first show that

C(S \ y) = C(S) whenever y /∈ ΓAF (S). By contradiction, suppose there is a y /∈ ΓAF (S)

such that C(S) ̸= C(S \ y). Take any x ∈ C(S), we have x PAF y because y /∈ C(S) and

C(S) ̸= C(S \ y). Consequently, we know that θAF (S) ≽AF y for ≽AF is a completion of

PAF which suggests that y ∈ ΓAF (S). Hence, we know that C(S \ y) = C(S) whenever
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y /∈ ΓAF (S). Thus, we have θAF (S \ y) = θAF (S) whenever y /∈ ΓAF (S). Finally,

ΓAF (S) = ΓAF (S) = {C(S)} ∪ {s ∈ S : θAF (S) ≽AF s}

= {C(S \ y)} ∪ {s ∈ S : θAF (S \ y) ≽AF s}

= {C(S \ y)} ∪ {s ∈ S \ y : θAF (S \ y) ≽AF s}

= ΓAF (S \ y).

Since ΓAF is an attention filter, we can keep iteration to show that θAF (S) = θAF (ΓAF (S)).

As a result, C can be rationalized by ⟨ΓAF , θAF ,≽AF ⟩ under the SAF.

Similarly to the SIA, it is also possible to form a WARP-like axiom analogously to that

in Masatlioglu et al. (2012).

Axiom 2 (WARP-AF). For every S ∈ X there is an x∗ ∈ S such that for every T if

C(T ) ∩ S ̸= ∅ and C(T \ x∗) ̸= C(T ), then x∗ ∈ C(T ).

x∗ can still be interpreted as the “best” alternatives in S. Due to the fact that C is

a choice correspondence in our framework, our WARP-like axiom modifies WARP(LA) in

Masatlioglu et al. (2012) by allowing C(T )∩ S ̸= ∅. As it turns out, the acyclicity of PCF

is equivalent to the WARP-AF.

Lemma 6. PAF is acyclic if and only if C satisfies WARP-AF.

Proof. If PAF is acyclic, then C can be rationalized by a consistent SLA pair ⟨Γ,≽, θ⟩. Let
x∗ = max(S,≽) for all S ∈ X . Take any T where C(T )∩S ̸= ∅ and C(T \x∗). If x∗ ∈ C(T ),

we are done. If there is a y ∈ C(T )∩S, we have x∗ ≽ y. BecauseC(T \x∗) ̸= C(T ) implies

that x∗ ∈ Γ(T ), we have x∗ ∈ C(T ).

For the converse direction, we prove it by showing its contrapositive statement. Suppose

that PAF is cyclic, we then know that there is a z1 ∈ X such that z1 PAF
R z1, i.e., there

are finite collections {zj}mj=1 {Zj}mj=1 where zj ∈ Zj for each j such that

z1 ∈ C(Z1), C(Z1) ̸= C(Z1 \ z2) and z2 /∈ C(Z1),

z2 ∈ C(Z2), C(Z2) ̸= C(Z2 \ z3) and z3 /∈ C(Z2),

· · ·

zm ∈ C(Zm), C(Zm) ̸= C(Zm \ z1) and z1 /∈ C(Zm).
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Let Z = {zj}mj=1. For any z1 ∈ Z there is a set Zm such that C(Zm)∩S ̸= ∅, C(Zm \ z1) ̸=
C(Zm), and z1 /∈ C(Zm). For any zj ∈ Z with j ≥ 2, there is a set Zj−1 such that

C(Zj−1) ∩ S ̸= ∅, C(Zj−1 \ zj) ̸= C(Zj−1).

Consequently, the SAF can be characterized by the WARP-AF as well.

Theorem 7. A choice correspondence C is an SAF if and only if C satisfies WARP-AF.

4.2 Competition Filter

Lleras et al. (2017) defines competition filters, which suggest that if an alternative catches

the DM’s attention in a menu S, it will also do so in all subsets of S that include x.

Definition 12. An attention rule is a competition filter if x ∈ Γ(S) ∩ T implies that

x ∈ Γ(T ) for all T, S ∈ X with T ⊆ S.

In a similar manner to the SAF, satisficing under competition filter can be defined.

Definition 13. A choice correspondence C is a satisficing under competition filter

(SCF) if C is an SIA with ⟨Γ,≽, θ⟩ where Γ is a competition filter.

Competition filters indicate that, if the DM pays attention to some alternatives in a

larger menu, these alternatives, if available in a smaller menu, should attract the DM’s

attention. This is because perceiving alternatives in a more complex environment should

be more difficult. The challenge is to determine how to infer the DM’s attention from

a menu. One trivial observation is that the chosen alternatives must catch the DM’s

attention. Thus, we can define a binary relation based on it.

Definition 14. For any x, y ∈ X, x PCF y if there are sets T, S ∈ X with {x, y} ⊆ T ⊆ S

such that y ∈ C(S), x ∈ C(T ) and y /∈ C(T ).

The acyclicity of PCF characterizes the SCF.

Lemma 7. A choice correspondence C is an SCF if and only if PCF is acyclic.

Proof. Assume that C can be rationalized by an SCF pair ⟨Γ, θ,≽⟩. By contradiction,

suppose that there is a z1 ∈ X such that z1 PCF
R z1 where PCF

R is the transitive closure

of PCF . Take any x PCF y, we know that x ≽ y by the definition of PCF . Since ≽ is a

linear order, we know that z1 PCF
R z1 cannot be true.
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Suppose that PCF is acyclic for the converse direction. We then can fix any linear order

≽CF who is a completion of PCF
R . Consider

ΓCF (T ) = {x ∈ T : x ∈ C(S) for some S ⊇ T} and θCF (T ) = min(C(T ),≽CF ).

It is clear that ΓCF is a competition filter. We then want to show that ⟨ΓCF ,≽CF , θCF ⟩
is a consistent SAF pair, i.e., C(T ) =

{
t ∈ ΓCF (T ) : t ≽CF θCF (T )

}
. Take any t ∈ C(T ),

we know that t ∈ ΓCF (T ) and t≽CF θCF (T ) by the definitions. For the converse direction,

take any t ∈ ΓCF (T ) and t≽CF θCF (T ). By contradiction, suppose that t /∈ C(T ). We

know that there is a set S ⊃ T such that x ∈ C(S), which implies that θCF (T ) PCF x.

Hence θCF (T ) ≽CF x.

The WARP-like axiom for the SCF also can be formed as in the SIA and the SAF.

Axiom 3. (WARP-CF) For every S ∈ X , there is a x∗ ∈ S such that for any T with

x∗ ∈ T , if C(T ) ∩ S ̸= ∅ and x∗ ∈ C(Y ) for some Y ⊇ T then x∗ ∈ C(T ).

Similarly, x∗ can be interpreted as the “best” alternatives in S. When an alternative

in S is chosen in T , and x∗ catches the DM’s attention in T , the x∗ should be chosen in

T . The acyclicity of PCF is equivalent to WARP-CF.

Lemma 8. PCF is acyclic if and only if C satisfies WARP-CF.

Proof. We first suppose that PCF is acyclic. We then know that C is an SCF under a

consistent pair ⟨Γ, θ,≽⟩. Take any S ∈ X , and x∗ = max(S,≽). For any T ∈ X , since

there is a Y ⊇ T such that x∗ ∈ C(Y ), x∗ ∈ Γ(T ). Because C(T ) ∩ S ̸= ∅, we know that

x∗ ∈ C(T ).

For the converse direction, we show it by showing the contrapositive statement. Suppose

that PCF is acyclic. There is a finite sequence of {zj}mj=1 with z1 P
CF z2, ..., P

CF zm PCF z1.

That is there are finite collections of menus {Zj}mj=1 and {Z ′
j}mj=1 such that

{z1, z2} ⊆ Z1 ⊆ Z ′
1, z2 ∈ C(Z ′

1), z1 ∈ C(Z1), and z2 /∈ C(Z1),

{z2, z3} ⊆ Z2 ⊆ Z ′
2, z3 ∈ C(Z ′

2), z2 ∈ C(Z2), and z3 /∈ C(Z2),

· · ·

{zm, z1} ⊆ Zm ⊆ Z ′
m, z1 ∈ C(Z ′

m), zm ∈ C(Zm), and z1 /∈ C(Zm).
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Let’s consider Z = {zj}mj=1. For z1, there is a Zm ⊆ Z ′
m such that z1 ∈ C(Z ′

m), C(Zm)∩Z ̸=
∅ and z1 /∈ C(Zm). For any zj with j > 1, there is a Zj−1 ⊆ Z ′

j−1 such that zj ∈ C(Z ′
j−1),

C(Zj−1) ∩ Z ̸= ∅ and zj /∈ C(Zj−1).

Obviously, we can characterize the SCF by WARP-CF.

Theorem 8. A choice correspondence C is an SCF if and only if C satisfies WARP-CF.

5 Conclusion

We propose a satisficing model under idempotent attention in this paper. To characterize

the SIA, we take perspectives from both the acyclicity condition of some binary relation

and the WARP-like axiom.

SIA separates limited attention from limited cognitive abilities, which have long been

considered as factors leading to satisficing or bounded rationality (see Simon (1997), Tyson

(2008), Frick (2016) et.al.). In particular, we consider a family of idempotent attention

rules used in Li (2023), which is a generalization of attention filters (see Masatlioglu et al.

(2012)), competition filters (Lleras et al. (2017)), and path independent consideration (see

Lleras et al. (2021)). Two systems of characterization have been provided for both the

SAF and SCF as special cases.

We analyze the revealed SIA pairs under the strictest conditions to determine the

welfare implications of the SIA. Unfortunately, if a choice correspondence is an SIA, then

it must have at least two consistent SIA pairs. This negative result is due to the inability

to determine the DM’s preference based on the choice correspondence.
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Appendix

A Characterization of Satisficing under Full Attention

We first introduce the formal definition of satisficing (under full attention).

Definition 15. A choice correspondence C is a satisficing (under full attention)

if there is a linear order ≽ and a threshold function θ : X → X such that C(S) =

{s ∈ S : s ≽ θ(S)} where θ(S) ∈ S for all S ∈ X .

According to the satisfaction model, the chosen alternative should be better than the

unchosen alternative. We can define it as a binary relation.

Definition 16. For any x, y ∈ X, x P s y if there is an S ∈ X such that x ∈ C(S) and

y ∈ S \ C(S).

As shown in Aleskerov et al. (2007) and Tyson (2008), satisficing can be described as

the following Lemma. We still show the proof in detail despite the slight difference in our

settings.

Lemma 9. A choice correspondence can be rationalized by a satisficing model if and only

if P s is acyclic.

Proof. Take an arbitrary choice correspondence C, and suppose that it can be rationalized

by a satisficing model under ⟨≽, θ⟩. By contradiction, suppose that there is a finite collec-

tion of alternatives {xi}ki=1 such that x1 P s x2 P s, ..., P s xk P sx1. There is a collection of

sets {Si}ki=1 such that xi ∈ C(Si) and xi+1 ∈ Si \ C(Si) for all i < k, and xk ∈ C(Sk) and

x1 ∈ Bk \ C(Bk). As a result, ≽ is not linear.

For the converse direction, suppose that P s is acyclic. Let P s
R be the transitive closure of

P s, P s
R be a completion of P s

R. Let f(S) = min{C(S), P s
R}. It is evident that x ∈ C(S)

implies that x P s
R f(S). Suppose that there is a t ∈ S with t P s

R f(S) such that t /∈ C(S).

We then know that f(S) P s t. Consequently, C(S) =
{
s ∈ S : s P s

R f(S)
}
.

We remain to show that WARP-S is equivalent to the acyclicity of P s.

Lemma 10. P s is acyclic if and only if C satisfies WARP-S.

Proof. Suppose that P s is acyclic. By Lemma 9, C is admits a satisficing under ⟨≽, θ⟩.
Take any S ∈ X , let x∗ = max(S,≽). Fix any T ∈ X with x∗ ∈ T , if t ∈ C(T ) ∩ S, then
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t ≽ θ(T ). Also, t ∈ S suggests that x∗ ≽ t ≽ θ(S). As a result, x∗ ∈ C(T ).

For the converse direction, suppose that P is cyclical, i.e., there is a collection of {Si}ki=1

such that

s1, s2 ∈ S1, s1 ∈ C(S1), and s2 /∈ C(S1);

s2, s3 ∈ S2, s2 ∈ C(S2), and s3 /∈ C(S2);

· · ·

s1, sk ∈ Sk, sk ∈ C(Sk), and s1 /∈ C(Sk).

Let S = {si}ki=1. We cannot find a corresponding x∗ in WARP-S for S.

The following theorem is a direct result of Lemma 9 and Lemma 10.

Theorem 9. A choice correspondence C admits satisficing if and only if it satisfies WARP-

S.
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