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This online appendix contains five parts. First, Appendix A provides the character-

ization of the AR-IA without assuming positive utility functions. Second, in Appendix

B, we discuss the uniqueness of utility functions under similarity transformation and the

uniqueness of consistent pairs. Third, the practices of revealed attention under AR-IAs

and AR-AFs are introduced using the weakest criteria in Appendix C. Fourth, we present

several results regarding interpersonal comparisons of attention capacity in Appendix D.

Finally, we introduce the Borda-IA as an application of the AR-IA in Appendix E

A AR-IAs without u ≥ 0

The paper assumes that u ≥ 0. As a result of this assumption, we can characterize

alternatives with zero utility and state the IB axiom in a straightforward manner. Despite

its absence, we are still able to characterize the AR-IA.

Definition. ≽ on X admits a General Additive Representation under Idempotent

Attention (General AR-IA) if there exist an idempotent attention rule Γ : X → X ,

and a function u : X → R such that for any S, T ∈ X ,

S ≽ T ⇐⇒
∑

s∈Γ(S)

u(s) ≥
∑

t∈Γ(T )

u(t).

Given any pair of above Γ and u, we say that ≽ on X admits a General AR-IA under

(Γ, u).

∗Department of Economics, University of California Riverside. Email: dayang.li@email.ucr.edu.

1



Of course, we still need WO.

Axiom 1. (WO: Weak Order) ≽ on X is complete and transitive.

Based on the proof of the characterization of the AR-IA, we can associate a set S to

one of its corresponding basic sets to construct the idempotent attention rule. Moreover,

the basic sets must catch the DM’s full attention. Consequently, we only need to ensure

that the system of inequalities induced by the ≽ on B has a solution. The condition still

follows Kraft et al. (1959), Scott (1964), Krantz et al. (1971) and Fishburn (1992), which

is known as Finite Cancellation or Strong Additivity.

Axiom 2. (FC: Finite Cancellation) There do not exist a positive integer m and {Sn}mn=1,

{Tn}mn=1 ⊆ B where Sn ≽ Tn for all n, and Sn ≻ Tn for some n, such that
∑m

n=1 1Sn(x) =∑m
n=1 1Tn(x) for all x ∈ X where 1 is the indicator function.

FC follows a similar logic to NR. According to the FC axiom, if two subcollections of

basic sets contain exactly the same content, it cannot be the case that the DM prefers one

over the other. Obviously, it imposes a consistent condition on aggregating preference on

X.

Theorem 1. ≽ on X admits a General AR-IA if and only if it satisfies WO and FC.

Proof. There is no doubt that WO is necessary. In order to demonstrate the necessity of FC,

assume that ≽ on X admits a General AR-IA under (Γ, u). By contradiction, assume that

FC does not hold. Fix a positive integer m and {Sn}mn=1, {Tn}mn=1 ⊆ B where Sn ≽ Tn for

all n, and Sn ≻ Tn for some n. We then know that
∑m

n=1

∑
x∈Sn

u(x) >
∑m

n=1

∑
x∈Tn

u(x).

However,
∑m

n=1

∑
x∈Sn

u(x) =
∑m

n=1

∑
x∈Tn

u(x) when
∑m

n=1 1Sn(x) =
∑m

n=1 1Tn(x) for

all x ∈ X.

To ensure sufficiency, we can follow the proof of characterization of the AR-IA to

construct the idempotent attention rule Γ with Γ(X ) = B. FC guarantees the AR on B,
which follows directly from Lemma 0 in Kraft et al. (1959).

B More Results about the Uniqueness of (Γ, u)

B.1 Uniqueness of Utility Functions

As we mentioned above, if u is a consistent utility function for the AR-IA (AR-AF), then

cu with c > 0 is also a consistent utility function for the representation.1 It is natural to

1This implies that {(Γi, ui)}i∈I≽ and {(Γj , uj)}j∈J≽ must contain infinitely many consistent pairs.
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ask whether for any two consistent utility functions u and v for the AR-IA (AR-AF), there

is a c > 0 such that u = cv. If it is true, then say that the utility function is unique up to

similarity transformation (Fishburn (1992)).

Definition. Assume that ≽ on X admits AR-IAs. We say the utility function is unique

up to similarity transformation under the AR-IA if for any (Γi1 , u), (Γi2 , v) ∈
{(Γi, ui)}i∈I≽ there is a c > 0 such that u = cv. Similarly, Assume that ≽ on X admits

AR-AFs. We say the utility function is unique up to similarity transformation under

the AR-AF if for any (Γj1 , u), (Γj2 , v) ∈ {(Γj , uj)}j∈J≽ there is a c > 0 such that u = cv.

For both AR-IAs and AR-AFs, the utility function is not necessarily unique up to

similarity transformation.

Example 1. Let X = xyz. The preference ≽ on X is xyz ≻ xy ∼ x ≻ yz ∼ y ≻ xz ∼ z.

It is clear that B = {xyz, x, y, z}. We consider two pairs of attention rules and utility

functions. Let u1(x) = 3, u1(y) = 2, u1(z) = 1, and

Γ1(S) =



x if S = xy,

y if S = yz,

z if S = xz,

S otherwise.

Let u2(x) = 2, u2(y) = 1, u2(z) = 0, and

Γ2(S) =



x if S = xy,

y if S = yz,

xz if S = xz,

S otherwise.

Clearly, ≽ on X admits AR-IAs and AR-AFs, and (Γ1, u1) and (Γ2, u2) can both be con-

sistent pairs. However, ≽ on X cannot be represented by (Γ2, u1) under the AR-IA and

the AR-AF.

We also cannot find a positive real number c such that u1 = cu2. If such a c exists, it

requires that u1(z) = cu2(z) which is impossible.
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Proposition 1. If the utility function is unique up to similarity transformation under the

AR-IA, then N = ∅.

Proof. Assume that the utility function is unique up to similarity transformation under the

AR-IA. By Claim 1, we know that Rank(A) = |X/∼| − 1. By contradiction, suppose that

N = ∅. Then, there is a u ∈ U≽ such that u(x) = 0 for all x ∈ MIN(X,≽). As a result,

u(y) = 0 for all y ∈ X. Notice that it suggests that x ∼ y for all x, y ∈ X . Moreover,

B = {S ∈ X : |S| = 1}. In this situation, we can let v(x) = 1 for all x ∈ X. It is clear

that v ∈ U≽ while there is no c > 0 such that u = cv.

Suppose that the utility function is unique up to similarity transformation. Fix any

two consistent utility functions u, v with u = cv where c > 0. For any arbitrary x ∈ X,

we know that u(x) = cv(x). In view of the fact that u and v are strictly positive utility

functions, c = u(x)
v(x) . As a result, u(y) = cv(y) = v(y)

v(x)u(x) for all y ∈ X. Hence, u(x) and

u(y) have a proportional relationship for any x, y ∈ X.

Condition 1. (Proportion) For any x, y ∈ X with x ≽ y, there is a positive integer

m, and {Sn}mn=1, {Tn}mn=1 ⊆ B where Sn ∼ Tn for all n, such that 0 <
∑m

n=1 1Sn(x) −∑m
n=1 1Tn(x) ≤

∑m
n=1 1Tn(y) −

∑m
n=1 1Sn(y), and

∑m
n=1 1Sn(z) =

∑m
n=1 1Tn(z) for other

z ∈ X.

The Condition 1 ensures that there is a proportional relationship between the utility of

any two alternatives. It turns out to be the necessary and sufficient condition for the utility

function to be unique up to similarity transformation under the AR-IA. Furthermore, this

condition is also valid for the case of AR-AFs.

Theorem 2. Assume that ≽ on X admits AR-IAs (AR-AFs). The utility function is

unique up to similarity transformation if and only if ≽ on X satisfies Proportion.

Proof. Suppose that ≽ on X admits AR-IAs. Let U≽ be the collection of consistent utility

functions.

We begin with proving the if part. Consider the equivalent class [x] = {y ∈ X : x ∼ y},
we know we can partition X by the equivalent classes. Now, let X/∼ = {xi}Ii=1 where

xi ≻ xj for all i < j. Suppose that for any xi, xj ∈ X with xi ≽ xj , there is a positive

integer m, and {Sn}mn=1, {Tn}mn=1 ⊆ B where Sn ∼ Tn for all n, such that
∑m

n=1 1Sn(xi) ≥∑m
n=1 1Tn(xj), and

∑m
n=1 1Sn(z) =

∑m
n=1 1Tn(z) for other z ∈ X. Since ≽ on X admits

the AR-IA under (Γ, u), we know that there is a pair of real numbers ci, cj such that
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ciu(xi) = cju(xj) where ci > cj . By induction, we have c1u(x1) = c2u(x2) = · · · = cIu(xI)

where c1 > c2 > · · · > cI . Furthermore, for any other AR-IA pair (Γ′, v), we still have

c1v(x1) = c2v(x2) = · · · = cIv(xI) where c1 > c2 > · · · > cI . Hence, u = u(x1)
v(x1)

v.

For the converse direction, suppose that U≽ is up to under similarity transformation.

We first know that if ≽ on X admits an AR-IA under (Γ, u), then (Γ, cu) also be a consistent

AR-IA pair for any c > 0. Consequentially, if U≽ ̸= ∅, then |U≽| = ∞.

Let’s consider the linear system induced by ∼ on B. If B ∼ B′, we know
∑

b∈B u(b)−∑
b′ u(b

′) = 0. the system then can be written as Au(X) = 0 where A is the coefficient

matrix and u(X) = (u(x1), ..., u(xI))
T .

Claim 1. If the utility function is unique up to similarity transformation, then Rank(A) =

|X/∼| − 1.

Proof. By contradiction, suppose that the linear system induced by ∼ ∩(B × B) does not
have |X/∼|−1 linearly independent equations. We know the linearly independent equations

must be smaller than |X/∼| − 1, otherwise u(x) = 0 for all x. In this case, u(x) = 1 for all

x still represents ≽ while the utility is not unique under similarity transformation. Now,

suppose that Rank(A) = |X/∼| − k where k > 1. The solution to Au(X) = 0 then has

k parameters. In other words, fix any (u(x1), .., u(xk)) = (a1, ..., ak), u(xk+i) should be a

linear combination of (a1, ..., ak) for any i ≤ I−k. Suppose that (u(x1), .., u(xk)) = (1, ..., k)

and (v(x1), .., v(xk)) = (3, ..., k + 3), we know there is no c > 0 such that u = cv.

By Gaussian elimination, if Rank(A) = |X/∼| − 1, then the last nonzero row of A

can be reduced as (0, ..., 0, ci, cj) which implies that ciu(xi) = cju(xj) for arbitrary xi, xj .

Moreover, if xi ≽ xj , then ci ≤ cj . Thus, for any x, y ∈ X with x ≽ y, there is a positive

integerm, and {Sn}mn=1, {Tn}mn=1 ⊆ B where Sn ∼ Tn for all n, such that 0 <
∑m

n=1 1Sn(x)−∑m
n=1 1Tn(x) ≤

∑m
n=1 1Tn(y) −

∑m
n=1 1Sn(y), and

∑m
n=1 1Sn(z) =

∑m
n=1 1Tn(z) for other

z ∈ X. When it comes to the uniqueness of (Γ, u), we can combine the uniqueness of utility

functions and the uniqueness of attention rules.

The proportional relationship between the utility of alternatives must be determined by

the indifference relationship on B. Intuitively, the linear system induced by∼ ∩(B×B) must

have one parameter. In other words, for the x ≻ y in the statement of Theorem 2, if u(x) is

fixed as some positive number, then u(y) must be cu(x) where c =
∑m

n=1 1Sn (x)−
∑m

n=1 1Tn (x)∑m
n=1 1Tn (y)−

∑m
n=1 1Sn (y)

.
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Example 2. Let X = xyz, the DM’s preference on X is xyz ∼ z ∼ xy ≻ x ∼ xz ∼ yz ∼ y.

Notice that B = {xy, x, y, z}. We want to show that u(z) = 2u(x) for all u ∈ U . Consider,

{xy, x}{z, y}, we know that xy ∼ z and x ∼ y. Both collections contain one y. The

{xy, x} collection contains two x, and no z. The latter collection contains one z and no x.

Clearly, if u(x) is fixed, then u(z) = 2u(x). Furthermore, given another v ∈ U≽, we also

have v(z) = 2v(x) = 2v(y). Let c = v(x)
u(x) , we then know that v = cu. The utility function

is unique up to similarity transformation.

B.2 Uniqueness of Consistent Pairs

Definition. Suppose that ≽ on X admits an AR-IA (AR-AF). The AR-IA (AR-AF)

representation is unique if the attention rule is unique and the utility function is unique up

to similarity transformation.

In light of the requirement that the utility function be unique, it is evident that there

are no null alternatives. N = ∅, as the requirement of the uniqueness of attention rules, is

redundant for characterizing the uniqueness of (Γ, u).

Corollary 3. Suppose that ≽ on X admits an AR-IA. The AR-IA representation is unique

if and only if

(i) ≽ on X satisfies the Proportion condition;

(ii) for every S ∈ X there is a unique B ∈ B such that B ⊆ S and B ∼ S, i.e., |B(S)| = 1

for all S ∈ X .

Corollary 4. Suppose that ≽ on X admits an AR-IA. The AR-IA representation is unique

if and only if

(i) ≽ on X satisfies the Proportion condition;

(ii) for any S there is a unique basic set B such that T ∼ S ∼ B for all T with B ⊆ T ⊆ S.

C Revealed Attention

The paper analyzes the revealed attention by imposing stringent criteria for both AR-IAs

and AR-AFs. It is also possible to investigate them by imposing the weakest criteria. The

combination of these two practices gives us a comprehensive picture of how DMs form their

attention.
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C.1 Revealed Attention under AR-IAs

Suppose that the ≽ on X admits AR-IAs, and let {(Γi, ui)}i∈I≽ be the collection of all

consistent pairs of idempotent attention rule and utility function. When one of the con-

sistent idempotent attention rules suggests that the DM will pay attention to s in S, an

alternative s might catch the DM’s attention. Formally,

Definition. An alternative s weakly catches attention under AR-IAs in S if s ∈
Γi(S) for some i ∈ I≽.

Let B̄(S) := {T ⊆ S : ∃B ∈ B(S) s.t. T ∼ B and T \B ⊆ N}. We know that every

T ∈ B̄(S) can be the DM’s attention on S. Accordingly, if s ∈ T for some T ∈ B̄(S), then
s should weakly catch the attention of AR-IAs.

Corollary 5. An alternative s weakly catches attention under AR-IAs in S if and only if

there is a T ∈ B̄(S) such that s ∈ T .

Proof. As we know, if T ∈ B̄(S), then there is a Γi with Γi(S) = T for some i ∈ I≽. The

Corollary 5 is a direct result of this observation.

In a similar manner, we can form the weakest criterion for a menu S that catches

attention.

Definition. A menu S weakly catches full attention under AR-IAs if Γi(S) = S

for some i ∈ I≽.

Under AR-IAs, the DM considers all alternatives in any basic set. The DM may pay

attention to all alternatives in S if a set S is composited with one of its corresponding basic

sets and some null alternatives.

Proposition 2. A menu S weakly catches full attention under AR-IAs if and only if there

is a corresponding basic set B of S such that S \B ⊆ N .

Proof. Suppose that a menu S weakly catches full attention under AR-IAs, and the con-

sistent idempotent attention and utility function are Γ and u, respectively. If S is basic,

we are done. If S is nonbasic, then for any B ∈ B(S), we have∑
s∈Γ(S)

u(s)−
∑
b∈B

u(b) =
∑
s∈S

u(s)−
∑
b∈B

u(b) =
∑

s∈S\B

u(s) = 0.
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That is, S \ B ⊆ N . For the converse direction, it is clear that S \ B = N for some

B ∈ B(S) implies that S = B ∪O for some B ∈ B(S) and O ⊆ S ∩N . Hence, there is an

idempotent attention Γ that consistents with AR-IAs such that Γ(S) = S.

C.2 Revealed Attention under AR-AFs

We now assume that ≽ on X admits AR-AFs, and the collection of consistent pairs of

attention filer and utility function is denoted as {(Γj , uj)}j∈J≽ . We can define an alternative

that weakly catches attention under AR-AFs in the same manner as AR-AFs.

Definition. An alternative s weakly catches attention under AR-AFs in S if s ∈
Γj(S) for some j ∈ J≽.

We can construct a consistent attention filter by associating S to a T ∈ IB(S).

Proposition 3. An alternative s weakly catches attention in S under AR-AFs if and only

if there is a T ∈ IB(S) such that s ∈ T .

Proof. We know that for any T ∈ IB(S), there is an attention filter that is consistent with

AR-AFs such that Γ(S) = T . Take any attention filter Γ that is consistent with AR-AFs

and a set S such that Γ(S) /∈ IB(S), we then know that there is a Y where Γ(S) ⊆ Y ⊆ S

such that Y is not indifferent to S, which suggests that Γ is not an attention filter. As a

result, the theorem is relatively straightforward.

The weakest criterion of revealed attention can also be applied to sets under AR-AFs.

Definition. A menu S weakly catches full attention under AR-AFs if Γj(S) = S

for some j ∈ J≽.

We know that any T ∈ IB(S) may serve as Γj(S) for some j ∈ J≽. As a result, if

S ∈ IB(S), then S should weakly attract the full attention of the DM under AR-AFs.

This property can be further investigated by observing that the set difference between S

and any of its corresponding basic sets is a subset of N . As a result, this characterization

is identical to that found in AR-IAs.

Proposition 4. A menu S weakly catches full attention under AR-AFs if and only if there

is a corresponding basic set B of S such that S \B ⊆ N .
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Proof. Suppose that a menu S weakly catches full attention under AR-AFs, and (Γj , uj)

the consistent pair of AR-AF. We then know Γj(S) = S. If S is basic, then S \S = ∅ ⊆ N .

If S is not basic, then there is a corresponding basic set B of S such that
∑

s∈S\B uj(s) = 0,

which implies that S \ B ⊆ N . For the converse direction, taking a B ∈ B(S) such that

S \B ⊆ N . Then, we know that S ∈ IB(S), which suggests that there is an attention filer

Γ′
j that is consistent with AR-AFs such that Γ′

j(S) = S.

D Relative Attention

One of the reasons for DMs’ limited attention is their limited cognitive capacity. DMs’

cognitive abilities can be inferred from basic sets when we interpret basic sets as the images

of their attention rule.

In order to compare interpersonal attention, we need to know which alternatives at-

tract the DMs’ attention for each menu. When their attention rules are idempotent, it is

equivalent to finding the relationship between the corresponding basic sets of each menu.

Intuitively, when DM 1 is more attentive than DM 2, then, given any menu, an alternative

that attracts DM 2’s attention should catch DM 1’s attention as well. Occasionally, we are

unable to pin down the attention of the DMs. We then use the most stringent condition

for this comparison.

Suppose that two DMs’ preference ≽1 and ≽2 on X both admit AR-IAs, and denote

{(Γi1 , ui1)}i1∈I≽1
and {(Γi2 , ui2)}i2∈I≽2

as the collection of the consistent pairs of AR-IA

for DM 1 and DM 2, respectively.

Definition. Suppose that ≽1 and ≽2 on X admit AR-IAs. ≽1 is more attentive than ≽2

if given any i1 ∈ I≽1
and S ∈ X , Γi2(S) ⊆ Γi1(S) for all i2 ∈ I≽2

.

Under AR-AFs, relative attention can be defined similarly. Let’s denote the consistent

pairs of AR-AFs as {(Γj1 , uj1)}j1∈J≽1
and {(Γj2 , uj2)}j2∈J≽2

for DM 1 and DM 2 respec-

tively.

Definition. Suppose that ≽1 and ≽2 on X admit AR-AFs. ≽1 is more attentive than ≽2

if given any j1 ∈ J≽1
and S ∈ X , Γj2(S) ⊆ Γj1(S) for all j2 ∈ J≽2

.

By B≽1
and B≽2

we respectively denote the collection of basic sets of ≽1 and ≽2. Since

B≽1
⊆ Γi1(X ) for all i1 ∈ I≽1

, we can focus on the B≽1
. Similarly, we denote B̄≽1

(S) and

B̄≽2
(S) as B̄(S) for ≽1 and ≽2 respectively. If, given any menu S, an alternative s ∈ T
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for some T ∈ B̄≽2
(S), then s must be included in all the corresponding basic sets of S in

under ≽1.

Corollary 6. Suppose that ≽1 and ≽2 on X admit AR-IAs. ≽1 is more attentive than ≽2

if and only if, for any S ∈ X ,
⋃

T ′∈B̄≽2
(S) T

′ ⊆ B for all B ∈ B≽1
(S).

Proof. By Corollary 5, ≽1 is more attentive than ≽2 if and only if, for any S ∈ X ,⋃
T ′∈B̄≽2

(S) T
′ ⊆ T for all T ∈ B̄≽1

(S). Since B≽1
(S) ⊆ B̄≽1

(S) for any S,
⋃

T ′∈B̄≽2
(S) T

′ ⊆ T

for all T ∈ B̄≽1
(S) if and only if

⋃
T ′∈B̄≽2

(S) T
′ ⊆ B for all B ∈ B≽1

(S).

When DMs’ attention rules are attention filters, given any menu S, their attention to

S is an element in IB(S). Let IB≽1
(S) and IB≽2

(S) denote the IB(S) for DM 1 and

DM 2 respectively. In this case, the relative attention can be understood as follows: If an

alternative x is included in T ′ where T ′ ∈ IB≽2
(S), then x should also be included in T

for all T ∈ IB≽1
(S).

Corollary 7. Suppose that ≽1 and ≽2 on X admit AR-AFs. ≽1 is more attentive than

≽2 if and only if, for any S ∈ X ,
⋃

T ′∈IB≽2
(S) T

′ ⊆ T for all T ∈ IB≽1
(S).

Proof. Since Γj1(S) = T for some T ∈ IB≽1
(S) and Γj2(S) = T ′ for some T ′ ∈ IB≽2

(S),

the statement holds.

The definition of relative attention allows for the heterogeneity of alternatives in the

formation of attention. When some alternatives are objectively easier to catch the attention

of DMs than others, relative attention can be considered as an alternative to alternative

comparison. When the attention-forming procedures are homogeneous between alterna-

tives, each alternative has the same level of difficulty in attracting DMs’ attention. Similar

interpretations can be found in Geng and Özbay (2021) and Geng (2022). In this scenario,

we only need to consider the cardinalities of the sets in B̄(S) and IB(S) for the AR-IA and

AR-AF, respectively.

E An Application of the AR-IA: Borda-IA

According to the AR-IA, the DM aggregates utility to form preferences over menus. De-

pending on the individual, the utility function in the AR-IA varies. However, utility

functions are often specified in practice, such as the Borda score. Suppose that |X/∼| = k,

by using the Borda score, the DM assigns k− i+1 for the i-th preferred alternatives in X
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(see, e.g., Baigent and Xu (2004) and Darmann and Klamler (2019)).2 We may define the

Borda score as a function b : X → N. In cases where alternatives are mutually compatible

in each menu, the DM is able to add the Borda scores of the alternatives in each menu to

form ≽. 3

If the DM is using the Borda score to evaluate menus and has an idempotent attention

rule, then ≽ should admit the AR-IA under (Γ, b).

Definition. ≽ on X admits a Borda score under idempotent attention (Borda-IA)

if there is an idempotent attention rule Γ : X → X such that

S ≽ T ⇐⇒
∑

s∈Γ(S)

b(s) ≥
∑

t∈Γ(T )

b(t)

where b : X → N is the Borda score.

A Borda-IA is an AR-IA in which the Borda score b is used as the utility function. A

partition of X can be formed by the inverse image of b. When |X/∼| = k, b−1(k) denotes

the most preferred alternatives. Similarly, b−1(1) represents the collection of least preferred

alternatives, i.e., MIN(X,≽). For simplicity, we denote b−1(0) = x0 = ∅. The Borda score

implies that xi ∈ b−1(i) should be indifferent to xi−1x1 with xi−1 ∈ b−1(i− 1) and i ≥ 1 if

the DM pays full attention to both xi and xi−1x1. Therefore, for some S ∈ X , suppose that

xi, xj ∈ S and xi+1, xj−1 /∈ S. When the DM pays full attention, the preference should

exhibit S ∼ (S \ xixj) ∪ xi+1 ∪ xj−1.

Definition. For any S ∈ X , xi ∈ b−1(i) ∩ S, xj ∈ b−1(j) ∩ S, xi+1 ∈ b−1(i + 1) ∩ Sc,

and xj−1 ⊆ b−1(j − 1) ∩ Sc where i < k and j ≥ 1, (S \ xixj) ∪ (xi+1 ∪ xj−1) is a basic

equivalent transformation of S. Let us denote it as S ∼= (S \ xixj) ∪ (xi+1 ∪ xj−1). A

menu T is an equivalent transformation of S if S Tran(∼=) T where Tran(∼=) is the

transitive closure of ∼=. Let us denote it as ≃.

Through the equivalent transformation of S, we can transform it into a menu T with

the same Borda score. Instead of limited attention, this transformation is determined by

2Another Borda score is used in previous literature, where the DM assigns k − i for the i-th preferred
alternative. This situation results in k− 1 being given to the most preferred alternative, and 0 being given
to the least preferred alternative. For simplicity, we will focus on the Borda score in which all alternatives
possess strict positive utility.

3Alcantud and Arlegi (2008) interprets b as a ”categorizing” function. Specifically, the DM partitions
the alternative set X based on a number of characteristics. The DM has a linear preference for the collection
of characteristics represented by the function b. As a result, the value of a menu is determined by adding
the value of its characteristics together.
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the Borda score. In light of this, even though the DM is limitedly attentive, ≽ on Γ(X )

should satisfy the monotonicity axiom.

Axiom 3. (EM: Extended Monotonocity) For any S, T ∈ X and B1, B2 ∈ B, if B1 ≃ S ⊇
T ≃ B2, then B1 ≽ B2.

The EM axiom posits an extra additive requirement for the AR-IA. For two basic setsB1

and B2, if an equivalent transformation of B1 is a superset of an equivalent transformation

of B2, then the DM should prefer B1 to B2. It turns out that the requirement of the

Borda-IA can be characterized by the EM axiom.

Theorem 8. ≽ on X admits a Borda-IA if and only if ≽ on X satisfies EM.

Proof. We first notice that ≃ is reflexive. Let us first permutate X by using b, and denote

this permutation by π. To be specific,

X =
{
xm1 , ..., xm|b−1(m)|

, ..., x11 , ..., x1|b−1(1)|

}
=

{
xπ1 , ..., xπ|b−1(m)|

, ..., xπ|X|

}
where xiα ∈ b−1(i) for all 1 ≤ α ≤ |b−1(i)|. We then can consider X a finite sequence with

permutation π, i.e., X = Xπ.

Claim 2. For any S ∈ X , there is a T ∈ X with S ≃ T such that either |T | = 1 or the

first |T | − 1 elements are {xπi}
|T |−1
i=1 when |T | ≥ 2.

Proof. Take any S ∈ X , assume that S is a subsequence of Xπ. Suppose that S starts being

different from Xπ at some n-th element, and list the remaining part of S as {sn, ..., sn+k}.
If S is identical to the first |S| or |S| − 1 elements of Xπ, then we are done. We, therefore,

assume that k ≥ 1. By the equivalent transformation, we also can assume that the DM

strictly prefers xπ|s|−k
over sn. This suggests that sn /∈ b−1(m). Suppose that sn ∈ b−1(i)

where i < m and sn+k ∈ b−1(j) where j ≥ 1. By the equivalent transformation, we know

that S ≃ S \ snsn+k ∪ xi+1 ∪ xj−1 where xi+1 ∈ b−1(i+ 1) and xj−1 ∈ b−1(j − 1). We can

assume that xi+1 = xπβ
where β is the smallest number of all xπα ∈ b−1(i + 1). We can

assume the same thing for xj−1, and denote S \ snsn+k ∪ xi+1 ∪ xj−1 as S1. If S1 satisfies

the requirement for the claim, we are done. If not, we can repeat the previous steps until

the requirement is fulfilled.

Furthermore, for any S ∈ X , let T be the equivalent transformation that meets the

condition, and suppose that the |T |-th element is different from xπ|T | . We can make one

12



more step of the equivalent transformation by giving the lowest available index for the

|T |-th elements in its equivalent class. If T coincides with the first |T |-th element of Xπ,

we can leave it as T . In this way, we can transform any S into a unique T 1. Let’s denote

this T 1 as Sπ, i.e., S ≃ Sπ.

Corollary 9. For any S, T ∈ X , S ≃ T if and only if
∑

s∈S b(s) =
∑

t∈T b(t).

Proof. By the previous Claim, we know that there is a Sπ and Tπ such that S ≃ Sπ and

T ≃ Tπ. Moreover,
∑

s∈Sπ
b(s) =

∑
t∈Tπ

b(t). Since Sπ = Tπ, we know that
∑

s∈S b(s) =∑
t∈T b(t). For the converse direction, take any S ∈ X , we know that S ≃ Sπ. Hence,∑
s∈S b(s) =

∑
s∈Sπ

b(s). Similarly, there is a Tπ for T . Since
∑

s∈S b(S) =
∑

s∈Sπ
b(s),∑

s∈Sπ
b(s) =

∑
t∈Tπ

b(t). Hence, Sπ = Tπ which implies that S ≃ T .

Now, we can prove the Theorem 8. Suppose that ≽ on X admits a Borda-IA. Clearly,

≽ on X admits an AR-IA. Moreover, take any B1, B2 ∈ B, and S, T ∈ X such that

B1 ≃ S ⊇ T ≃ B2. We then have that
∑

x∈Γ(B1)b(x)
=

∑
x∈B1

b(x) =
∑

s∈S b(s). Similar

equality also holds between B and T . Since S ⊇ T ,
∑

s∈S b(s) ≥
∑

t∈T b(t). As a result∑
x∈Γ(B1)

b(x) ≥
∑

y∈Γ(B2)
b(y) which implies that B1 ≽ B2.

For the converse direction, suppose that ≽ on X admits an AR-IA and satisfies EM.

We know that there is an idempotent attention Γ that is consistent with the AR-IAs such

that Γ(X ) = B. We then can focus on this Γ. By contradiction, suppose that (Γ, b) is

not a consistent pair of the Borda-IA, i.e., there is a pair of B1, B2 ∈ B such that we

cannot have B1 ≽ B2 ⇐⇒
∑

x∈Γ(B1)
b(x) ≥

∑
y∈Γ(B2)

b(y). That is,
∑

x∈Γ(B1)
b(x) ≥∑

y∈Γ(B2)
b(y) =⇒ B2 ≻ B1. We first know that there are B1π, B2π with B1 ≃ B1π and

B2 ≃ B2π such that
∣∣∣Bjπ \

⋃|Bjπ |
i=1 xπi

∣∣∣ ≤ 1 for j = 1, 2. We can assume that B1π ̸= B2π

Since
∑

t∈B1π
b(t) ≥

∑
t∈B2π

b(t), we know that |B1π| ≥ |B2π|. We need to consider the

following cases:

Case 1:
∣∣∣B1π \

⋃|B1π |
i=1 xπ1

∣∣∣ = 1 and
∣∣∣B2π \

⋃|B2π |
i=1 xπ1

∣∣∣ = 1. If MIN(B1π,≽) =

xi ≻ MIN(B2π,≽) = xj , then B1π \ xi ∪ xi−jxj ≃ B1π ⊇ B2π. Hence, B2 ≻ B1 vio-

lates EM. If MIN(B2π,≽) = xj ≻ MIN(B1π,≽) = xi, then we have |B1π| − |B2π| ≥ 1.

Moreover, B1π \ xπ|B1π |−1
∩ xjxj′ ≃ B1π ⊇ B2π where xj′ ∈ b−1(j − b(xπ|B1π |−1

)). Clearly,

it also violates EM.

Case 2:
∣∣∣B1π \

⋃|B1π |
i=1 xπ1

∣∣∣ = 0 and
∣∣∣B2π \

⋃|B2π |
i=1 xπ1

∣∣∣ = 0. We then know that

MIN(B1π,≽) = xi ≻ MIN(B2π,≽) = xj . Following the same procedure, we can check

that this violates EM.
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Case 3:
∣∣∣B1π \

⋃|B1π |
i=1 xπ1

∣∣∣ = 1 and
∣∣∣B2π \

⋃|B2π |
i=1 xπ1

∣∣∣ = 0. We then have B1π ⊇ B2π.

This case also violates EM.

Case 4:
∣∣∣B1π \

⋃|B1π |
i=1 xπ1

∣∣∣ = 0 and
∣∣∣B2π \

⋃|B2π |
i=1 xπ1

∣∣∣ = 1.We then have B1π ⊇ B2π.

This case also violates EM.

As a special evaluation rule, the Borda score indicates that there is a unit increment

in utility between xi−1 and xi. In the characterization of the Borda-IA, the condition for

b ∈ U≽ is presented. Further, given the DM’s preference for X , when is it appropriate to

say that the DM must use the Borda score in evaluating each menu?

Definition. Suppose that ≽ on X admits a Borda-IA. The DM is revealed to use Borda

score if for all u ∈ U≽, and x, y ∈ X, u(x)
b(x) = u(y)

b(y) .

If the DM must use the Borda score to evaluate menus, then any consistent utility

function should be produced by multiplying a positive number by b. It should be related

to the uniqueness of the similarity transformation for the utility function.

Theorem 10. The DM is revealed to use the Borda score if and only if for any x ∈
b−1(i), y ∈ MIN(X,≽), there is a positive integer m, and {Sn}mn=1, {Tn}mn=1 ⊆ B where

Sn ∼ Tn for all n, such that
∑m

n=1 1Sn (x)−
∑m

n=1 1Tn (x)∑m
n=1 1Tn (y)−

∑m
n=1 1Sn (y)

= i, and
∑m

n=1 1Sn(z) =
∑m

n=1 1Tn(z)

for other z ∈ X.

Proof. Assume that ≽ on X admits a Borda-IA, and the DM is revealed to use the Borda

score. Take any u, v ∈ U≽ and x, y ∈ X, we know that u(x)
u(y) =

b(x)
b(y) =

v(x)
v(y) . It suggests that

u(x) = u(y)
v(y)v(x). Hence, the utility function is unique under similarity transformation. By

the proof of Theorem 2, we can show this direction.

For the converse direction, we can assume that for any x ∈ b−1(k), y ∈ MIN(X,≽),

there is a positive integer m, and {Sn}mn=1, {Tn}mn=1 ⊆ B where Sn ∼ Tn for all n, such that∑m
n=1 1Sn (x)−

∑m
n=1 1Tn (x)∑m

n=1 1Tn (y)−
∑m

n=1 1Sn (y)
= k, and

∑m
n=1 1Sn(z) =

∑m
n=1 1Tn(z) for other z ∈ X. Since ≽

on X admits AR-IAs, for any u ∈ U≽, we have u(xi)
u(x1)

= i, as a result, u(xi)
u(x1)

= b(xi)
b(x1)

= i. It

suggests that u(x)
b(x) = u(y)

b(y) for all x, y ∈ X .
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